Controlling carrier densities in photochemically reduced colloidal ZnO nanocrystals: size dependence and role of the hole quencher.
نویسندگان
چکیده
Photodoped colloidal ZnO nanocrystals are model systems for understanding the generation and physical or chemical properties of excess delocalized charge carriers in semiconductor nanocrystals. Typically, ZnO photodoping is achieved photochemically using ethanol (EtOH) as a sacrificial reductant. Curiously, different studies have reported over an order of magnitude spread in the maximum number of conduction-band electrons that can be accumulated by photochemical oxidation of EtOH. Here, we demonstrate that this apparent discrepancy results from a strong size dependence of the average maximum number of excess electrons per nanocrystal, . We demonstrate that increases in proportion to nanocrystal volume, such that the maximum carrier density remains constant for all nanocrystal sizes. is found to be largely insensitive to precise experimental conditions such as solvent, ligands, protons or other cations, photolysis conditions, and nanocrystal or EtOH concentrations. These results reconcile the broad range of literature results obtained with EtOH as the hole quencher. Furthermore, we demonstrate that depends on the identity of the hole quencher, and is thus not an intrinsic property of the multiply reduced ZnO nanocrystals themselves. Using a series of substituted borohydride hole quenchers, we show that it is possible to increase the nanocrystal carrier densities over 4-fold relative to previous photodoping reports. When excess lithium and potassium triethylborohydrides are used in the photodoping, formation of Zn(0) is observed. The relationship between metallic Zn(0) formation and ZnO surface electron traps is discussed.
منابع مشابه
Size dependence of negative trion Auger recombination in photodoped CdSe nanocrystals.
We report a systematic investigation of the size dependence of negative trion (T(-)) Auger recombination rates in free-standing colloidal CdSe nanocrystals. Colloidal n-type CdSe nanocrystals of various radii have been prepared photochemically, and their trion decay dynamics have been measured using time-resolved photoluminescence spectroscopy. Trion Auger time constants spanning 3 orders of ma...
متن کاملCarrier concentration dependent optical and electrical properties of Ga doped ZnO hexagonal nanocrystals.
Colloidal trivalent gallium (Ga) doped zinc oxide (ZnO) hexagonal nanocrystals have been prepared to introduce more carrier concentration into the wide band gap of ZnO. The dopant (Ga) modifies the morphology and size of ZnO nanocrystals. Low content of Ga enhances the optical band gap of ZnO due to excess carrier concentration in the conduction band of ZnO. The interaction among free carriers ...
متن کاملColloidal synthesis of germanium nanocrystals
In this study, colloidal germanium nanocrystals were synthesized by a simple and novel method, and their optical properties were also studied. Polyvinyl alcohol (PVA) as a surface modifier was used to control the optical properties of colloidal Ge nanocrystals. Fourier transform infrared spectroscopy (FTIR) analysis was performed to identify the various functional groups present in the sample. ...
متن کاملPhotochemical electronic doping of colloidal CdSe nanocrystals.
A method for electronic doping of colloidal CdSe nanocrystals (NCs) is reported. Anaerobic photoexcitation of CdSe NCs in the presence of a borohydride hole quencher, Li[Et3BH], yields colloidal n-type CdSe NCs possessing extra conduction-band electrons compensated by cations deposited by the hydride hole quencher. The photodoped NCs possess excellent optical quality and display the key spectro...
متن کاملPhonons Do Not Assist Carrier Multiplication in PbSe Quantum Dot Solids
Carrier multiplication (CM)the Coulomb scattering whereby a sufficiently energetic charge excites a valence electronis of interest for highly efficient quantum dot (QD) photovoltaics. Using time-resolved microwave conductivity experiments on 1,2ethanedithiol-linked PbSe QD solids infilled with Al2O3 or Al2O3/ZnO by atomic layer deposition, we find that CM and hot-carrier cooling are temperatu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 135 44 شماره
صفحات -
تاریخ انتشار 2013